PHYSICAL REVIEW C, VOLUME 62, 064905

Quantum field treatment of disoriented-chiral-condensate dynamics
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A practical quantum-field treatment is developed for systems endowed with an effective mass function
depending on both space and time and a schematic application illustrates the quantitative importance of
quantum fluctuations in the dynamics of disoriented chiral condensates.

PACS numbeps): 25.75~q, 11.30.Rd

[. INTRODUCTION on position as well, which then couples the elementary

The prospect of observing manifestations of chiral sym-modes and thus complicates the treatment significatdly.
metry restoration in high-energy nuclear collisions hastypical spatial profile of the mass function expected in
stimulated significant research activity over the past severdiuclear collisions is shown in Fig.)2.
years[1]. In this endeavor, the most popular theoretical tool
has been the linear model, which in its simplest form de- Il. PROPAGATION
scribes an interacting @) field with isoscalar ¢) and
isovector r) components. Within this framework, a number
of instructive dynamical simulations have been carried out a
the level of classical fields for the types of environment ex-

ected in high-ener collisiong2—-6]. Furthermore, N TR - 2, 2 a2

Suantum-field ?reatmer?’ys have been developed and applied, HOO=32[pOO7H (VACO)™F w5(x, DA%, @)
albeit within the mean-field approximation and for uniform
environmentg7-9].

With such environments in mind, we now turn to the for-
al developments. In the mean-field approximation, the
amiltonian density operator is given by

whereq(x) is the field operator anf(x) is its time deriva-
Relative to the classical studies, these latter treatmentlve' Free pions provide a natural basis but, in order to bring

take account of the ever present quantum fluctuations and | e problem onto a canonical form, each pair of traveling
P q waves| =Kk) is replaced by a corresponding pair of standing

appears that these may contribute significantly to the emer%aves|tx) [9]. With an arbitrary sign convention for the

ing signals[9]. Therefore, it is of interest to further develop uantum numberse= + k. the associated canonical eigen-
the quantal treatment so that more refined scenarios can l?e . - 9

. . unctions are
addressed dynamically. The present paper describes how the

guantum-field treatment may be extended to nonuniform en- \/5 cogr-x), Kk>0
vironments in a manner that allows numerical simulations ' ’
for the types of scenario relevant to the study of disoriented (X )= \/—— x| 1, =0, 2

chiral condensates. Moreover, the important role of quantum
fluctuations is illustrated by means of a concrete application.

The highly excited systems formed in high-energy nucleaiThe canonical modes are orthonormal and complete,
collisions expand very fast and the environments cool dowrf dx(a|X)(X| &'} = 8,4 , =, {X|K){KX")=8(x—x"). The ca-
correspondingly rapidly. As a consequence, the effectivgyonical annihilation operator ig,, with [&K,&L]zgkk,,
pion mass decreases quite quickly from its initially high ther-_ .4 the dispersion relation is?= «2+ m?.
mal value towards its free value. Furthermore, the non- “
equilibrium relaxation dynamics of the chiral order param- 3 i : :
eter gives rise to a fairly regular oscillatory modulation of
the mass with a frequency near half the value employed for
the ¢ meson[5]. Since the expansion is predominantly lon- =
gitudinal, it appear$3,5] that the cooling rate is insufficient
to produce a quencf2], in which the square of the pion
mass turns negative, causing the softest modes to becomg
unstable and thus display an exponential population growth.g
While perhaps unfortunate from the physics perspective, thist
feature does simplify the physical analysis and improves thes
prospect for developing test-particle transport treatments
[10]. (A concrete impression of the typical time evolution of 0
the effective pion mass in the bulk of the rapidly expanding
system can be gained from Fig) 1.

A further complication encountered in nuclear collision  FiG. 1. The time dependence of the bulk value of the effective
experiments is the nonuniformity of the environment result-mass function used in the illustratiopy(t). It has a rough corre-
ing from the finite extension of the systems formed. In thespondence with typical mass functions resulting from dynamical
mean-field framework, this causes the mass to be dependebCC studies with the lineas model[5,6].

— /2 sin(k-X), x<O.
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4 - - - - - - - Since the mass matrix is real and symmetrMd,,.(t)
=(r|u?(x,t)—A|K'), it can be diagonalized at any given
£ Ll timet by a real, unitary matrib§(t), leading to
<
= A )
15 A =52 [PR+OZQR]. (1D
5 2%
C
2
§ Here the correlated canonical field operators are given by
=
o e Q=2 UuSw(t), Px=2 PeSw(t), (12
-20 -15 -10 -5 10 15 20 K K

0 5
Paosition x (fm)

FIG. 2. The initial mass function used in the illustration, and they satisfy Qy ,Pyx/]=idkk . At the given timet, the
w(x,t=0). It is obtained by smearing a sharp distribution on thecorresponding correlated eigenfunctions are
interval |x|<5 fm with an exponential having a width of one
fermi. The mass excess is assumed to retain its spatial profile while
the overall magnitude scales as the bulk valigét) given in Fig. 1. (X|KY="2> (X|K)S(t). (13
K

The field operators can then be expanded as follows:
If the eigenvalues are positiv@.ﬁ>0, excitations relative to
S — - Apon 2 Aok St the adiabatic vacuum state can be defined by means of cor-
a(x) EK (x| #)0c ; [F )t FAx)*en], (3) related quasiparticle annihilation operators,

P0=2 (X)p=2 [Cr 0+ G X* ol (@) Y L -y (14
K A 2 IZQK ’
The mode functions are governed by the usual field equation o
of motion, which can readily be solved numerically, which satisfy] Ax ,AL,]: dkk 1 - The adiabatic vacuum state,

EMX)=GMx),  GMx)=[A— u2(x) JFN(x). ®) |AO>,_|s charact.erlzed by the abs_ence of quasiparticles,
Ak|0)=0, and is generally a complicated many-body state
The appropriate initial conditions are when expressed in terms of the free quanta.
It is important to recognize that Eq14) refers to the

N 1 \ N Schralinger representation. The corresponding Heisenberg
Fix.t)= /th<x|)\>, GHx.t)=—i 7<X|)‘>' operator, A(t), can be obtained by replacing the Schro
(6)  dinger operators|, and p,. entering in Eq.(12) by the cor-

) _ ) _ responding Heisenberg operators given in Egsand(9),
Using the canonical representation of the mode functions,

FA(X)ZEK (X[ K)FX, GA(X)ZZK XKGY, () vle(t):EL: [UR(DA +VR(D*A]], (15)

we thus obtain the evolution of the canonical operators,  \hereA, is the quasiparticle annihilation operator associated

with the initial form of the mass functiop?(x,t;). The Bo-
A0 =2 [FNa,+FAH*al], (8)  goliubov coefficients/(t) andVg(t) can be obtained from
A the basic mode coefficients(t) andG(t) by a sequence of
elementary transformations.
p)=> GMt)ay+GN* a]]. 9) Since the operatorg (t) refer to the evolving eigenrep-
A resentation, they are less suitable for the analysis which is
better performed in th& andk representations,

Il. ANALYSIS
It is instructive tg express the Hamiltonian in terms of the ﬁ(x,t)zz [UL(x,t)AL+VL(x,t)*A[], (16)
canonical operatorp,. andq,, L
A(t)= dxﬂ(x)zlz P2+1> q M, . (10 (1) = Lix A Loy )% Al
524 Pict 224 iMoo Qic A(t)=2 [UL(XDA +VE(x,D)*AlT. (17)
K ' L
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The corresponding Bogoliubov coefficients are obtained by 07 - - - - T -
the appropriate additional transformations,

U =S (X)) Suc(DUL(D), 1y =
x £

g

uk(t)zEK (K| 1) S (DUE (). 19 &
i =

©

p

With the above preparations, we are now able to derivez
expressions for any quasiparticle observable. Of particularg
interest is the spatial correlation function,

PO X ) =(tATOAX)[t) =(t| AT(x ) A’ D) ]t;) T

5 0 5
Position x (fm)

= pM(x,x";t) + po(x,x";1). (20
) ) ) ~ FIG. 3. The spatial quasiparticle density at successive tir(es
Here the first term arises from the quantum fluctuations iNngicated, starting att=0 from the correlated vacuum associated

the initial state and is given by with the mass function shown in Fig. 2.
PMX,X 1) =2, VExX,H)VE(X >, (22) functionsF"(_x,t) andG"(x_,t) are the_n determined nume_ri-
L cally by solving the equation of motiof®b) for each canoni-

, _ ) . ..cal mode \. Since the mass function remains positive
The second term is caused by the real agitations in the initigh o ghout(in fact it is never below the free mass), it is
state(which are often referred to as the “classical” or “ther- possible to analyze the system in terms of the adiabatic qua-

mal” field fluctuations. _ _ siparticle modes at any time.
_Analogously, we may consider the one-body density ma- " rhe contribution from the quantum fluctuations to the
trix in the k representation, spatial quasiparticle density at various times during the evo-

lution, is shown in Fig. 3 and the associated spectral distri-

S O=(AAL D = (LA OA (D,
P (1) = (I AAL 1) = (6] A (DA (D) (22 bution is shown in Fig. 4,

=i () + pe (D), (23 B B
where the quantal contribution is pqu(x’t):pqu(x'x;t)zg VRO, (25
~qu _ L L *
P (D=2 ViV (D*. (24) L
T ‘ PO=pl0=3 Viol% (26)

Expressions for observables reflecting two- or many-body

correlations can also be derived but they become RIS ese guantities show what would result if there were no

sively more compllqated. Moreover, the_results of course d.eéxcitation at all in the initial statécorresponding to zero
pend on what is being assumed regarding the corresponding

correlations in the initial state. 06

IV. ILLUSTRATIVE APPLICATION o5 | ———-5

x

[=%
In order to demonstrate the practical applicability of the £
described treatment, and at the same time illustrate the im-§ 04|
portance of the quantum fluctuations, we consider a one-"g’. T
dimensional system having the most important features ex-@ 03t f
pected in actual scenarios. In order to emulate the finiteg 1
transverse extension of systems generated in high-energ® o2} i [/ < ) WY
heavy-ion collisions, we assume that the initial mass function § i/ N \
exceeds the free valua within only a limited region,|x| T il g A
<5 fm. We furthermore assume that(x) —m? maintains 4 -3 )
] . o . . Ho=3m
this spatial profile in the course of time, while the overall .
magnitude scales in proportion to its bulk valugy(t). Fig.
1 shows the time dependence of this latter quantity, while
Fig. 2 depicts the initial spatial profile of the mass function,  FIG. 4. The spectral distribution of the quasiparticles at succes-
u(x,0). sive times(indicated in fmg) starting att=0 from the vacuum
Given the particular mass functiop(x,t), the mode associated with the mass function shown in Fig. 2.
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temperaturg Any actual agitations in the initial state would erages over ensembles of initial states having similar mass
then lead to additional contributions. functions.
At the initial time, t=t;, the quantitiesp®™(x) and p" When the eigenvalues of the mass matrix are positive,

vanish by design. But soon, as the effective mass experiencé&?o_- itis particularly instructive to consider quasiparticle

its first rapid decrease, energy stored in the high initial mas€Xcitations defined relative to the adiabatic eigenbasis. But it
is liberated and a rapidly rising quasiparticle density appearghould be noted that even if the system enters the classically
with a spatial profile resembling that of the mass exces orbidden region where the quasiparticles cannot be defined,

Suu(X)=u(x)—m. Part of these quasiparticles are reab- edﬁci_yna_mical propagation of the system works without
: o . . modification.
sorbed when the mass again increases and this cycle is r€="A first application of the developed treatment has been

peated in a less noticeable manner, as the mass oscil_latio de to a system with a nontrivial mass function depending
proceed with an ever decreasing amplitude. The quasipartsy poth time and space. In addition to demonstrating the
cles produced by this mechanism have a rather structureleﬁactica”ty of the approach, the example serves to illustrate

spectrum of approximately Gaussian form. _ the quantitative importance of including the quantum fluc-
Meanwhile, the regularity of the temporal oscillations in tyations in the dynamical treatment.

the mass function begins to manifest itself and, at somewhat The approach assumes that the effective mass function is
later times, the spectral profile exhibits a visible enhancegiven. For the time being, an approximate form of the mass
ment of the modes near the resonance frequengy, function for a given scenario can be obtained on the basis of
~3w,=300 MeV, corresponding to a momentum kf; semiclassical simulatiori$]. Though not fully satisfactory,
~266 MeVic. As a consequence, the quasiparticle gas bethis approach may actually be reasonably accurate, since the
gins to resemble two countermoving beams with the correquantum treatment, while having a large effect on specific
sponding flow velocities centered aroungy,~ =+ Kyes/m. signals, is expected to have a relatively small overall effect
The two corresponding outwards bursts are clearly visible irPn the effective mass. Nevertheless, an interesting and more
Fig. 3 at late times when the mass function has largely reformal task, beyond scope of present study, is posed by the
laxed to its free form and the production processes have sul§iuestion of how to best determine the effective mass func-
sided. tion selfconsistently with the evolution of the quantum
Traces of these characteristic effects might be observabl@any-body state.
in actual collision experiments, such as those underway at As noted above, the computational challenge posed by the
RHIC. More extensive calculations would clearly be neededreatment is not prohibitively larger than that met at the clas-

for a quantitative assessment of this prospect. sical level, since it merely requirdeepeateglsolution of the
same field equatiob). The treatment may thus be applied to
V. DISCUSSION scenarios similar to those addressed at the classical level.

This presents an obvious practical task which should yield
In the present paper we have sketched how the nonunimore quantitative information on the observable signals of
form and rapidly evolving scenarios of interest in connectionthe expected chiral dynamics.
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